Jute Geotextiles and its Application in Mitigating Soil Related Problems

A brief presentation by

Pradip Choudhury Advisor (Technical)

National Jute Board Ministry of Textiles, Govt. of India

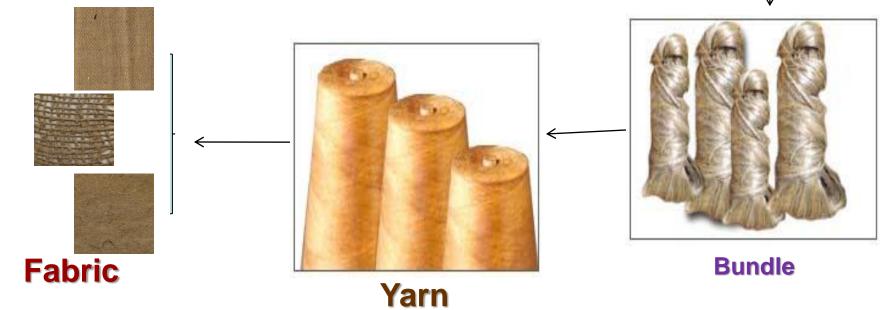
What is jute and jute geotextile -

- JUTE IS A NATURAL ECO-FRIENDLY BAST FIBRE. INDIA PRODUCES ABOUT 1.7 MILLION TON JUTE / YR. AND INVOLVES MORE THAN 40 LAC PEOPLE FOR THEIR LIVILIHOOD.
- Geotextile is the fabric which enhances the engineering properties of soil when applied in or on soil.
- Natural Geotextile like, Jute Geotextile (JGT) deserve separate mention because of its natural resource, annual renewability and unique features.
- There is hardly any difference between synthetic geotextiles & JGT function-wise. The term geosynthetics encompass both man made and natural geotextiles.

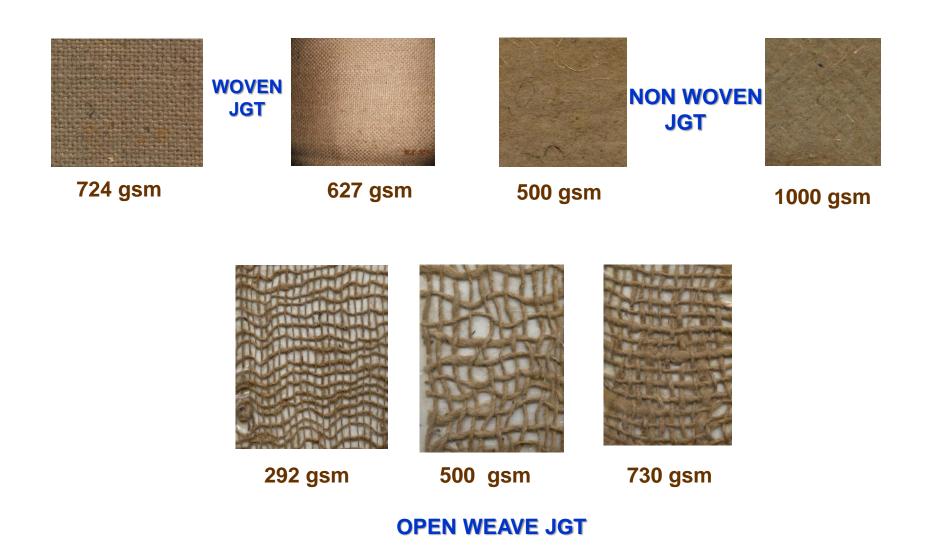
USP OF JUTE

- High tenacity—comparable to man-made fibres
- High initial modulus—even higher than coir
- Low elongation at break—lowest among all natural fibres—can provide good membrane support under load
- Highly hydrophilic highest among all fibres
- High roughness Co-efficient- ensures better load transference
- Excellent spinnability / weavability due to high cellulose content- enables manufacture of customized geotextile
- <u>Very high thermal stability</u>—around 170°C
- <u>Most drapable</u> of all fibres- can shape itself to soil contours
- <u>Eco-concordant</u>—Renewable resource : helps reduce carbon foot print in construction
- Abundantly available

- JUTE -PLANT TO FABRIC (GEOTEXTILE)



Plant


Retting

Glimpse of JGTs viz. woven, nonwoven & open weave etc. for use in various civil engineering applications

Chemical Constituents of jute fibre.

Constituents	%
Cellulose	<mark>60 - 62</mark>
Hemi Cellulose	<mark>22 - 24</mark>
Lignin	12 - 14
Others	1 – 2

Properties of Natural Fibres vis-à-vis Synthetic Fibres :

A fibre is suitable to manufacture Geotextiles when it possesses suitable mechanical and hydraulic properties

Type of fibre	Tenacity N/tex	Extension at break (%)	Initial modulus N/tex	Volume swelling %	Moisture regain %	Lignin content %
Jute	0.3-0.9	1-1.8	17 - 19	44.3	12-14	12-14
Coir	0.18	41-45	4.22	-	10	30
Sisal	0.37 - 4.7	1.9-4.5	25 - 26	39.5	11-14	9.9
Polyester	0.3-0.8	15 - 55	6 - 12	-	0.4-0.6	Nil
Polypropy lene	0.3-0.8	15 - 35	2 - 9	-	<0.1	Nil

Environmental Advantages of JGT :

During 100 days of jute growing period, 1 hectare of jute plant can absorb about 15 MT of CO_2 from atmosphere and liberate about 11 MT of O_2 . Studies reveal that CO_2 assimilation rate of jute is higher than trees (Inagaki, 2000; IJSG 2003).

Specifications of two varieties of woven Jute Geotextiles.

Nomenclature	Woven JGT 25 kN/m	Woven JGT 20 kN/m
Construction	1/1 DW Plain Weave	1/1 DW Plain Weave
Weight (gsm)	724	627
Width (cm)	100	100
Ends x Picks / dm	94 x 39	85 x 32
Thickness, (mm at 2 kPa)	1.85	1.7
Tensile Strength (kN/m) MD x CD	25 x 25	20 x 20
Elongation at break (%) MD x CD	10 x 10	8 x 8
Puncture Resistance(kN)	0.500	0.400
Burst Strength (KPa)	3500	3100
Permittivity at 50mm const. head (/sec)	350 x 10 ⁻³	350 x 10 ⁻³
A O S (micron) O ₉₅	150 - 400	150 - 400

Specifications of Open Weave Jute Geotextiles

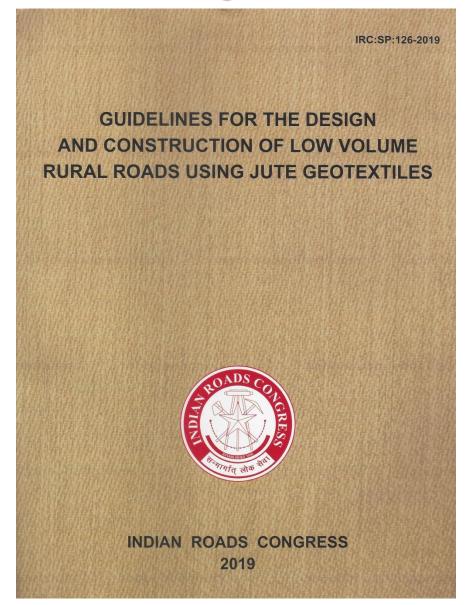
PROPERTIES	TYPE - 1	TYPE- 2	TYPE -3
Weight (g/m ²) at 20% M.R.	730	500	292
Ends x Picks / dm (MD x CD)	7 x 7	6.5 x 4.5	12 x 12
Thickness (mm)	7	5	3
Width (cm)	122	122	122
Aperture size (mm)	12 x 12	13 x 20	8 x 7
Tensile Strength, min. (kN/m) [MD x CD]	12 x 12	10.4 x 7.9	10 x 10
Elongation at break, max.(%) [MD x CD]	10 x 12	11 x 15	12 x 12

Test Methods followed for JGT

SI. No.	TYPE OF TESTS	UNIT	TEST METHOD (IS / ASTM)
1	WEIGHT	gsm	IS 2387
2	WIDTH	cm	IS 1954
3	ENDS / dm	-	IS 1963
4	PICKS / dm	-	IS 1963
5	THICKNESS (AT 2 KPa)	mm	IS 7702
6	GRAB TENSILE STRENGTH (BOTH WARP & WEFT)	kN	D 4632
7	ELONGATION AT BREAK	%	D 4632
8	BURST STRENGTH	kN	D 3786
9	PUNTURE RESISTANCE	kN	D 4833
10	PERMITIVITY	Per Sec.	D 4491
11	APPARENT OPENING SIZE	mm	D 4751

Standards and Guidelines :

- BIS
- Suidelines for application of Jute Geo-textiles for rain water erosion control in road & railway embankments and hill slopes(IS 14986:2001)
- Guidelines on rural road construction with JGT (IS 14715 Part I : 2016)
- Suidelines on river bank protection with JGT (IS 14715 Part II : 2016)
- Solution State State
- Solution Approximation Structure Approximation Stru


RD&SO, Ministry of Railways -

- ✤ Guideline no GE:G1 (July 2003)—
- ✤ Guidelines for earthwork in railway projects, 2007
- Unified Standard Schedule of Rates by Indian Railways,2011

Indian Roads Congress—

- Specifications for road & bridge works (2001) & Recommended practice for treatment of embankment slope & erosion control (1991)
- State-of-the Art Report on JGT prepared jointly by CRRI, IJIRA & NJB has been published by Indian Roads Congress in November 2011
- Guidelines for the Design and Construction of Low Volume Rural Roads Using Jute Geotextiles, IRC :SP:126-2019
- Schedule of Rates -
 - PWD, WBSRDA & I / W Govt. of WB, PWD Govt. of Assam & Meghalaya, BRO and all the 17 Divisions of Indian Railways

IRC Guidelines Released during 80th Session of IRC, Patna, 2019

SOME SALIENT RESEARCH FINDINGS :

✓ Loss of strength of JGT after a year is not a deterrent as, by that time, JGT is seen to have helped in providing a self sustaining sub-grade for most type of soils - (Ramaswamy & Aziz, NUS – 1989)

✓ Elongation at break of JGT is significantly lower than that of synthetic geotextiles (maximum 15% against more than 50 % of SGT) - (Ramaswamy & Aziz, NUS – 1989)

✓ Substantial reduction (more than 50%) in rut depth under dynamic load tests with JGT- (Ramaswamy & Aziz, NUS – 1989)

✓ Gain in strength of the sub-grade with time is compensated against the loss of strength of JGT within the same time frame (ibid & JU 2005)

HENCE, BIO-DEGRADABILITY OF JGT IS NOT A TECHNICAL HINDRANCE

LIST OF JGT USING ORGANIZATIONS

Sl. No.	Govt. of India Organization	Sl. No.	State Govt. Departments
1	Central Soil & Water Conservation Research &	1	SRDAs - WB, Assam, Odisha, MP, Chh'garh,
I	Training Institute (CSWCRTI)		Karnataka, Tripura, Monipur,UP, TN
2	Western Coalfields Ltd.	2	P.W.D. – W.B., Assam, Orissa, U.P.
3	Northern Coalfields Ltd.	3	I & W D – W.B. & Agri-IrrgWB
4	Border Roads Organization (BRO)	4	Irrigation & Public Health Deptt, Govt. of H.P.
5	Border Road Task Force (BRTF) Port Blair	5	Water Resource Department, Govt. of Orissa
6	National Hydroelectric Power Corporation (NHPC)	6	Sardar Sarobar, Narmada Nigam Ltd., Govt. of Gujrat
7	National Thermal Power Corporation (NTPC)	7	Department of Agriculture, Rajasthan
8	Indian Railways : Northern, Eastern, NF, SE,	8	Forest Deptt., Govt. of H.P.
	ECR etc.		
9	Kolkata Port Trust	9	Horticulture Deptt, Govt. of H.P.
10	Kandla Port Trust	10	Forest Department, Arunachal Pradesh
11	National Highway Authority (NHAI)	11	Forest & Environment, Govt. of Sikkim
12	Central Tobacco Research Institute, Karnataka	12	Delhi Development Authority (DDA)
	Municipality & Other Organizations	13	ICAR, Meghalaya
1	Kankinada Municipality	14	West Bengal Transport Infrastructure
			Development Corporation (WBTIDC)
2	Tata Nano Plant (Gujrat), TISC (Jharkhand)	15	Forest Department, Govt. of West Bengal
3	Agri-Horticulture, Kolkata	16	Forest Department, Govt. of Haryana
4	Indian Tea Research Association, Assam	17	MGNREGA, West Bengal

THE UNION STATES WHERE JGT HAS BEEN USED WITH SUCCESS -

Andhra Pradesh	Hariyana Himachal Pradesh	Bihar
Assam	Jammu & Kashmir	Punjab
Arunachal Pradesh	Karnataka	Rajasthan
Andaman & Nicobar islands	Maharashtra	Sikkim
Chhattisgarh	Madhya Pradesh	Tripura
Delhi	Manipur	Uttarakhand
Goa	Nagaland	Uttar Pradesh
Gujarat	Odisha	West Bengal

Tamil Nadu

ENCOURAGING RESULTS ACHIEDED FROM EXTENSIVE R & D WORKS FOLLOWED BY FIELD APPLICATIONS HELPED SIGNIFICANT INCREASE IN DEMAND OF JGT.

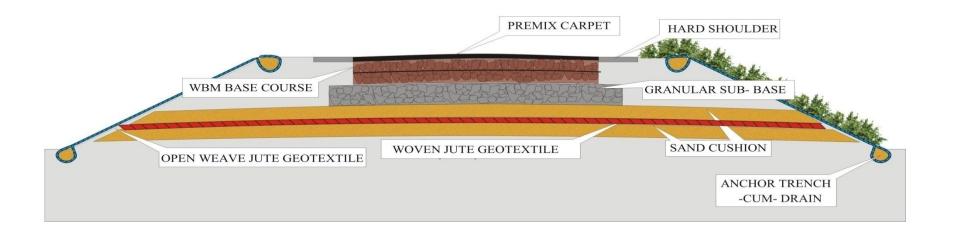
AS PER AVAILABLE DATA MORE THAN 850 FIELD APPLICATIONS HAVE BEEN UNDERTAKEN SUCCESSFULLY WITH JGT

SUPPORT OF NJB

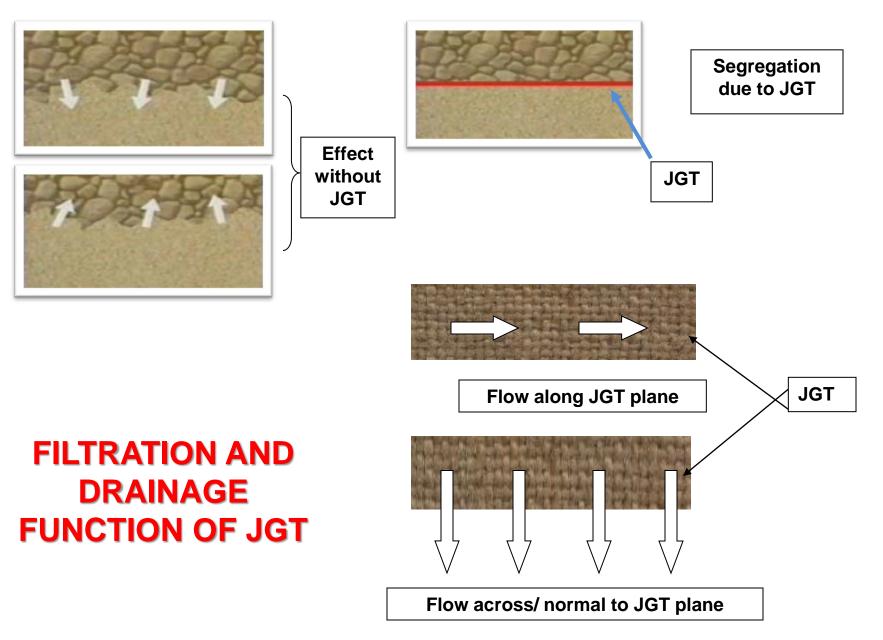
Provides technical support and guidance to the manufactures for producing standard quality of JGT.

Customization of JGT to address site-specific requirements.

Provides technical support and guidance in selection of right type of JGT & its installation at site apart from other remedial measures.

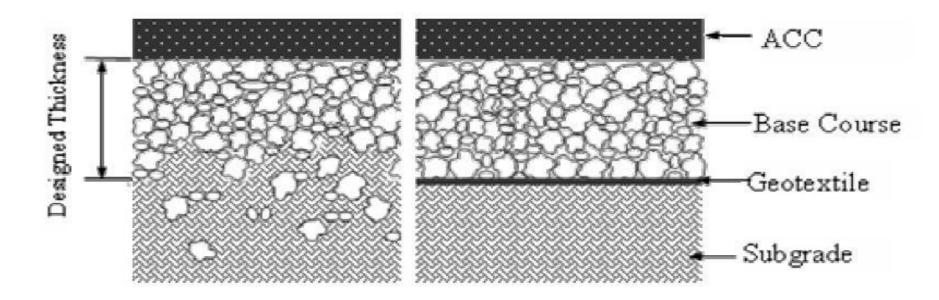

JGT is available from selected jute mills; NJB helps the endusers in procuring the right quality of JGT from the right manufacturers/ suppliers and its testing with certification.

Conducts awareness programme all over the country and also take classes for the trainee engineers at IAHE,IRICEN. CRRI, RCT&RC etc. as guest faculty.



APPLICATIONS OF JGT IN THE INTERFACE OF SUB-GRDAE & SUB-BASE OF ROAD

STRENGTHENING OF ROAD WITH JUTE GEOTEXTILE



EFFECT OF SEPERATION IN ROAD SUBGRADE

Separation

- Prevent the intermixing of two adjacent soils
- Separating fine subgrade soil from the aggregates of the base course, the geotextile preserves the drainage and the strength characteristics of the aggregate material

Strengthening of road sub-grade, Kanksa to Bati, Murshidabad, WB

Pre-work Condition of Road

Laying of JGT with overlap

Compaction of subgrade with roller

Sub-base spreading & roller compaction

Spreading of sand over sub-grade

Condition of road after two years

<u>Results</u>

Soil properties -

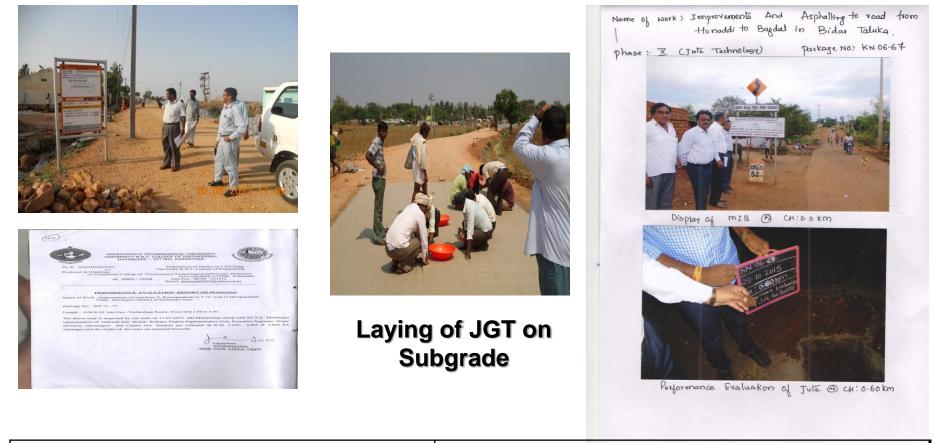
Properties of sub soil :

Composition	: <u>Silty clay</u>
Moisture content	: <u>30 %</u>
Liquid limit	: 40 – 45%
Plastic Limit	: 28%
OMC & MDD	:15 % & 1.76 g/cc
CBR % (Soaked) :	2.6 (During Construction)
CBR% (Soaked) :	7.42 (After 2.5 Year of application)

* Depending upon CBR value and calculated traffic volume, thickness of pavement was determined & quality of JGT was ascertained

Construction of PMGSY Road from Karapadi Mayanam to Pulliampattonumbiur, Erode, TN

Signage & preparation of road Sub-grade


Demo for installation of JGT on sub-grade

Compacted GSB laid over JGT

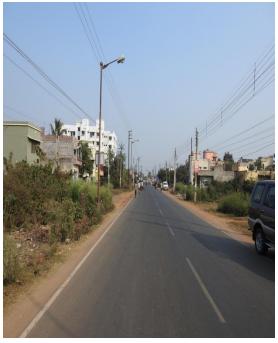
Construction of PMGSY Road with JGT at Bider, Karnataka

Avg. soil CBR %	Improved soil CBR %
(before laying JGT)	(after 36 months of laying JGT)
4.0	13.4

PMGSY ROAD WITH JGT IN DARRANG DISTRICT, ASSAM, INDIA

CONDITION OF ROAD AFTER 4 YRS.

Strengthening Sub-Grade : Bankura By-Pass Road from Panchbagha More to NH-60 (Executed by Bankura, PWD)


Laing of JGT on compacted sub-grade

Compaction of GSB laid over JGT

Finished Road-open to traffic

Condition of road after 6 years

Improvement of CBR value with the use of JGT in few roads both in India and Bangladesh

		Ind	ia			Bangladesh				
SI. No.	Name of the Road	Type of Soil (Before Road Construction)	CBR before constr uction	CBR after constructi on	Span of time while the CBR increased(mo nths)	Name of the road	Type of Soil	CBR before constructi on	CBR after construction	Span of time while the CBR increased (Months)
1.	Udal to Chakbrahma, South Dinajpur, West Bengal	Silty Clay (CH- Inorganic clays of high plasticity)	2.8	11.39	47	Turag- Rahitpur Bourvita Road	Silty Sand	3 (With JGT) 3 (Without JGT)	13.57 9.64	50
2.	Nihinagar to Hazratpur, South Dinajpur, West Bengal	Silty Clay (CH- Inorganic clays of high plasticity)	2.2	7.93	47	Circular Road at Savar Cantonment	Medium to High Expansive Silty Clay	3.6 (With JGT) 3.6 (Without JGT)	12.68 7.61	34
3.	Kanksa to Bati, Murshidabad, West Bengal	Clayey Silt (CL-Inorganic clays of low to medium plasticity)	3.8	7.42	33	Bancharampur southpara, Brahmanbaria	Silty Clay	2.3 (With JGT) 2.3 (Without JGT)	13.10 6.50	31
4.	Bagdimarimulo Barada Nagar to Damkal Kheya Ghat, Mathurapur, South 24 Paraganas, West Bengal	Clayey Silt (CL-Inorganic clays of low to medium plasticity)	3.5	11.11	29	Tezkhali- Titas Riverghat Road Brahmanbaria	Clayey Silt	3.3 (With JGT) 3.3 (Without JGT)	8.2 7.7	33
5.	Promod Nagar to Muga Chandra Para, Agartala, Tripura	Data Not available	8	10.86	19	Noabanki Shamnagar Road Sathkira	Silty Clay	1.4 (With JGT) 1.4 (Without JGT)	19.80 5	39
6.	Koracharahatti to T-10 Road, Bidar, Karnataka	CL-Inorganic clays of low to medium plasticity	4	13.4	36					
7.	Devarahospet to Gundur, Davangere, Karnataka	CL-Inorganic clays of low to medium plasticity	2.8	14.6	36					

Objective : Control of potholes & reflection cracks of the riding surface.

Treatment with JGT : The affected stretches of road were leveled up initially with aggregates and rolled. The prepared surface was applied with a tack coat @3 kg/10m². OW JGT was laid and lightly rolled. Another coat of bitumen was applied over JGT @5 kg/10m² followed by a layer of premix of bitumen and stone chips. The average thickness of the overlay was 25 mm.

Potholes on surface

Applying tack coat on JGT

Road Surface after 5 yrs

RESULTS : The treated pavement was inspected by the Civil Engineering Department, Jadavpur University in December, 2002 after it was subjected to two full monsoon season. The following table reveals the conditions prevailing before and after the treatment.

	Poth	PotholesCracksDepression		Depression	
Pre Work	No	%	Area	%	5 % (average thickness– 75 mm)
Condition	770	11	1239 m^2	17.70	5 % (average unckness- 75 mm)
Post Work Condition	84	1.20	257.25 m^2	3.67	Nil

CONCLUSION:

- Evidently the road is in a better shape after the treatment compared to the adjoining stretches where JGT was not applied on the overlay. The trial definitely brought out the fact that JGT helps in reinforcing asphaltic overlay.
- It was observed that the overlay performed satisfactorily where its thickness was in the range of 20 mm to 25 mm.
- \circ $\,$ There has been reduction in the overall pothole area after the treatment .

Arresting Crack & Potholes of rural road under PMGSY with the use of JGT at Mansorabad, Allahabad, UP

Damaged road

Cleaning & repairing

Spreading Prime & Tack Coat

Road Signage

Laying of JGT

Spreading Prime & Tack Coat on JGT

Pre-mix Carpeting

Seal Coating and Compaction

Prevention of pot holes / reflective cracks : Raiganj to Fatepur (Kaliaganj), SH-10A, PWD, Govt. of WB

Before application

Laying of JGT

Tack coat application

PMC application

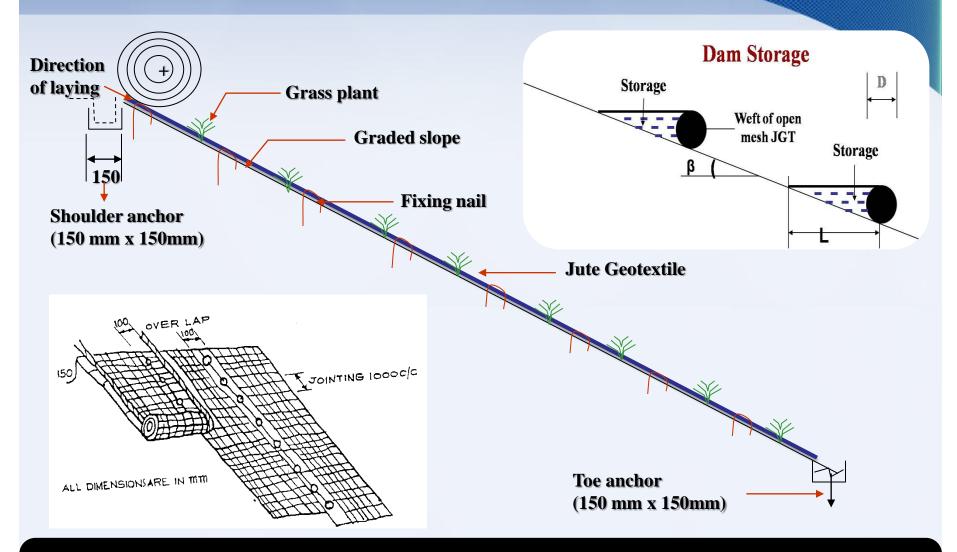
Roller compaction

Condition after four season cycles

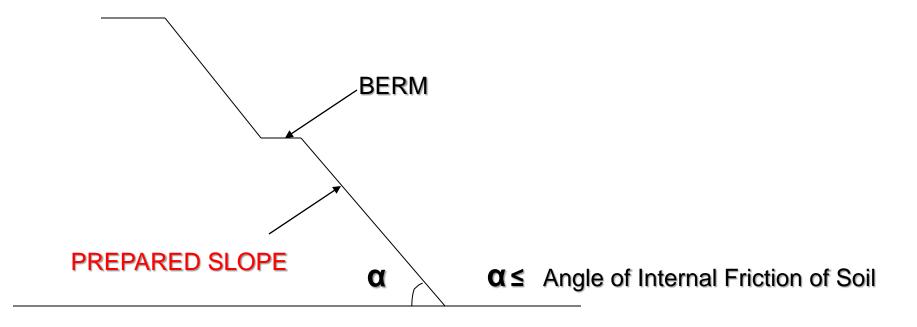
Strengthening of PWD road sub-grade with JGT from NH34 to Sagardighi, Murshidabad, WB

Condition of road before laying JGT

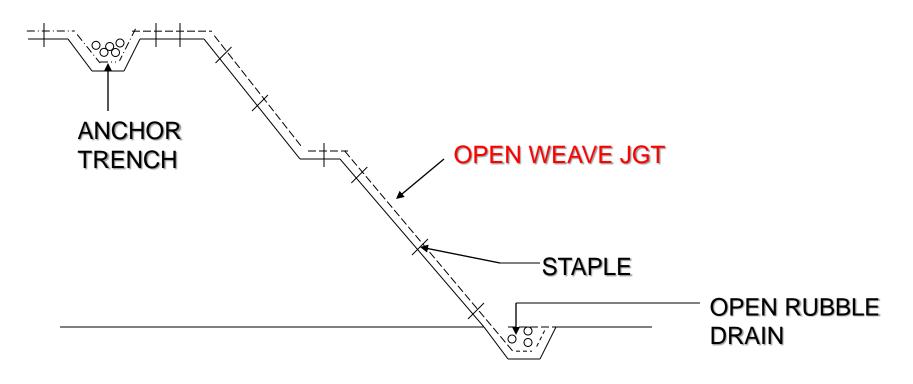
Laying of JGT on compacted sub-grade



Work in progress



Condition of road after elapse of 3 monsoon


Slope protection – a typical arrangement

Impounded of 2.87 litres of water per sq.m. of 500 gsm open weave JGT on a 1:2 slope

SLOPE PROTECTION WITH JGT (OPEN WEAVE)

SLOPE PROTECTION WITH JGT (OPEN WEAVE)

SUSTAINABLE ROAD WITH GREEN TECHNOLOGY THROUGH JGT

Slope protection of road through bioengineering technique

Plant growth on road side through JGT

Slope Stabilization of Cuttings, N Rly, Nangal, Panjab

Eroded Slope of Cuttings

Dressing & Installation of JGT

Sprouting of grass seeds through pores of JGT

Slope Stabilized with Vegetative Cover

SLOPE PROTECTION OF BRIDGE APPROACH WITH JGT MUNDESWARI, WB

LAYING OF JGT ON THE PREPARED SLOPE

STABILIZED SLOPE WITH VEGETATIVE COVER

Slope Stabilization with JGT, Jorabani to Imphal Road, Manipur

Destabilized Slope

Laying of JGT

Stabilized slope

Slope Stabilization with JGT, Karimganj - Bangladesh Road, Assam

Eroded slope of road embankment

Dressing of slope for laying JGT

Laying of JGT

Gayabari Paglajhora land side area on NH 55, Gayabari, Darjeeling, WB (Executed by PWD Roads, NH Div., Govt. of WB)

Before application

During application

Progress of vegetation growth after application

Construction completed on Dec. 2011

Hill Slope Site No. 2

Land slide area at Mid Western Himalayas (Dehradun, Uttarakhand) (Executed by CSWCRTI, Dehradun)

Stabilized Slope

Installation of JGT

APPLICATION OF JUTE AGROTEXTILE FOR SAND DUNE STABILIZATION IN COLD DESERT, RAJASTHAN

Destabilized Sand Dune – No Growth of Vegetation

Wind Induced Sand Movement Blocks Roads and Canal

SAND DUNE STABILIZATION WITH JUTE AGROTEXTILE

Laying of JAT

Plantation of Local Species

Stabilized Sand Dune with Growth of Vegetation (Forestation)

Hill Slope Stabilization with JGT at Adverse Climatic Zone, Leh

Hill slope stabilization with JGT at Ladakh - A BRO work

Stabilized hill slope and formation of ice on JGT

NB: STUDY CONDUCTED BY 16BRTF, BRO, J&K

SLOPE STABILIZATION OF RAIN WATER HARVESTING TANK WITH JGT

Laying of JGT on the prepared bank

Stabilization of OB Dump of Mines Spoil with JGT, Singrauili, NCL

DESTABILIZED SPOIL HEAP, SINGRAULI, UP LAYING OF JGT ON PREPARED SLOPE

STABILIZED MINE SPOIL WITH JGT

JGT for Slime OB Dump Stabilization, TISCO, Noamundi

Destabilized Slope

Gabion at Toe

JGT laid on dressed slope

Spreading of grass seed

Slope Stabilized with vegetative growth

VETIVER GRASS – ITS UNIQUE FEATURES

- VETIVER IS A RAPIDLY GROWING VARIETY OF GRASS.
- IT HAS A LONG FIBROUS ROOT SYSTEM
- THE ROOTS PENETRATE VERTICALLY 3.0 M DEEP AND HORIZONTALLY 0.5 M UNDER THE GROUND

Vetiver Root System

JGT for stabilization of FA OB Dumps, NTPC, Dadri, UP

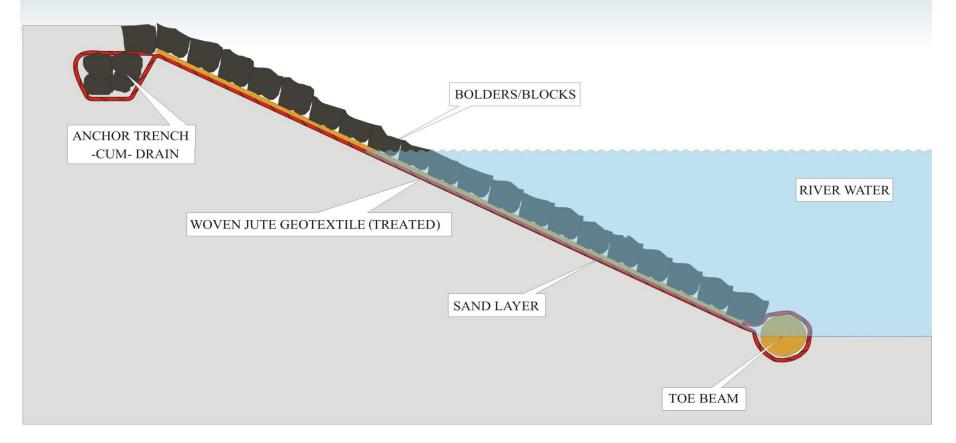
Rain cut & erosion

COMPACTED SLOPE BEFORE LAYING OF GEO JUTE

Compacted surface

JGT laid on Slope

Vetiver grass Root



Growth of vetiver grass through JGT

Stabilized FA OB Dump

RIVER BANK PROTECTION WITH JUTE GEOTEXTILE

Bank protection work on the right bank of River Punarbhaba at Vill. Battali, Malda (Executed by I & WD, Govt. of WB)

Before application

Armoring over JGT laid on bank Stabilized bank

Bank protection work at river Dharala (Executed by NB Flood Control Commission, Jalpaiguri)

Eroded bank

Laying of JGT on prepared bank

Stabilized River Bank

Left bank of the river Bhagirathi at Santipur, Dist. Nadia, WB (Executed by Irrigation Department, Nadia)

Nature of erosion

Installation of JGT

Stabilized River Bank

For further details pl. contact National Jute Board E mail – jute@njbindia.in, pradip1451@gmail.com, Website- www.jute.com